III-V CMOS: Quo Vadis?

J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao

Microsystems Technology Laboratories Massachusetts Institute of Technology

Compound Semiconductor Week 2018

Cambridge, MA, May 29-June 1, 2018

Acknowledgements:

- Former students and collaborators: D. Antoniadis, E. Fitzgerald, J. Grajal, J. Lin
- Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung, SRC

• Labs at MIT: MTL, EBL

Quo Vadis? = Where are you going?

III-V CMOS: The Promise

Scaling: Voltage $\downarrow \rightarrow$ Current density $\downarrow \rightarrow$ Performance \downarrow

v_{inj}(InGaAs) > 2v_{inj}(Si) at less than half V_{DD}
→ high current at low voltage

n-MOSFETs in Intel's nodes at nominal voltage

"Comparisons always fraught with danger..."

n-MOSFETs in Intel's nodes at nominal voltage

"Comparisons always fraught with danger..."

InGaAs stagnant for a long time

n-MOSFETs in Intel's nodes at nominal voltage

"Comparisons always fraught with danger..."

- Rapid recent progress
- InGaAs exceeds Si

n-MOSFETs in Intel's nodes at nominal voltage

Corrector and the second

"Comparisons always fraught with danger..."

- Rapid recent progress
- InGaAs exceeds Si

Lin, IEDM 2014 EDL 2016

Many requirements for a successful logic technology

ממ

Evolution of transistor structure for improved scalability

Enhanced gate control \rightarrow improved scalability

Evolution of transistor structure for improved scalability

FinFET

Transconductance of Si vs. InGaAs FinFETs

Transconductance of Si vs. InGaAs FinFETs

FinFET: large increase in current density per unit footprint over planar MOSFET

Transconductance of Si vs. InGaAs FinFETs

Best InGaAs FinFETs nearly match 14 nm Si MOSFETs

Transconductance of Si vs. InGaAs FinFETs

10 nm node Si MOSFETs a great new challenge!

InGaAs FinFETs @ MIT

Key enabling technologies: BCl₃/SiCl₄/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi, DRC 2014, EDL 2015, IEDM 2015

InGaAs FinFETs @ MIT

- Si-compatible process
- Contact-first, gate-last process
- Fin etch mask left in place → <u>double-gate MOSFET</u>

5 nm

Most aggressively scaled FinFET

 W_{f} =5 nm, L_{g} =50 nm, H_{c} =50 nm (AR=10), EOT=0.8 nm:

Fin-width scaling of ON-state current

Fin-width scaling of OFF-state current

- Excellent subthreshold swing scaling behavior
- From long L_q devices: $D_{it} \sim 8 \times 10^{11} \text{ cm}^{-2}.\text{eV}^{-1}$

Vardi, IEDM 2017

Excess OFF-state current

Band-to-band tunneling (BTBT) at drain end of channel

Classic BTBT behavior in long-channel devices

Excess OFF-state current

Current multiplication through parasitic bipolar transistor

- Large BJT current gain (up to ~100)
- Short $L_g: \beta \sim 1/L_g$
- Long L_g : $\beta \sim exp(-L_g/L_d)$, $L_d \approx 2-4 \ \mu m$

Zhao, EDL 2018, CSW 2018

Manufacturing robustness: impact of fin width on V_T

InGaAs doped-channel FinFETs: 50 nm thick, N_D~10¹⁸ cm⁻³

- Strong V_T sensitivity for $W_f < 10$ nm; much worse than Si
- Due to quantum effects
- Big concern for future manufacturing

MOSFET threshold voltage stability

MOSFET stability due to oxide traps

Planar InGaAs MOSFETs under forward-gate stress:

- $\bullet \Delta g_{m,max}$ and $\Delta V_{t,lin}$ correlated
- Negligible change in S
- 30 mV shift in 10 years for V_{gt} = 0.4 V
- Oxide traps = O vacancies in HfO₂

Cai, IEDM 2016

Excellent review by Franco, IEDM 2017

Other manifestations of oxide traps

Pulsed vs. DC

g_m frequency dispersion

Cai, CSW 2018 Also: Johansson, ESSDERC 2013

- Frequency dispersion in C_g and g_m
- Pulsed I-V \neq DC I-V
- DC <u>underestimates</u> transistor potential

InGaAs Vertical Nanowire MOSFETs

VNW MOSFET

Vertical NW MOSFET:

 \rightarrow uncouples footprint scaling from L_g, L_{spacer}, and L_c scaling

InGaAs VNW-MOSFETs by top-down approach @ MIT

Lu, EDL 2017

- Top-down approach: flexible and manufacturable
- Critical technologies: precision RIE + <u>alcohol-based</u> digital etch

D=7 nm InGaAs VNW MOSFET

Single nanowire MOSFET:

- $L_{ch} = 80 \text{ nm}$
- 2.5 nm Al_2O_3 (EOT = 1.3 nm)
- g_{m,pk}=1700 μS/μm
- Top contact = key problem

Zhao, IEDM 2017

0.2 0.3 V_{ds} (V)

0.4

0.5

0.0

0.1

Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs (V_{DS}=0.5 V), Si and Ge VNW MOSFETs

- First sub-10 nm diameter VNW FET of any kind on any material system
- InGaAs competitive with Si [hard to add strain]

InGaAs Vertical Nanowires on Si by direct growth

Riel, IEDM 2012

Conclusions

- 1. Great recent progress on planar, fin and nanowire InGaAs MOSFETs
- 2. Device performance still lacking for 3D architecture designs
 - \rightarrow severe oxide trapping masks true transistor potential
- 3. Serious challenges identified: excess off-current, stability, manufacturability, integration with Si
- 4. Vertical Nanowire MOSFET: ultimate scalable transistor; integrates well on Si